The Impact of Video-Based Module to The Student through Active Learning in Project Development

*Shahrina Shahrani¹, Rohizah Abd Rahman², Masura Rahmat³, Azura Ishak⁴, Noor Faridatul Ainun Zainal⁵, Hafiz Mohd Sarim⁶

Faculty of Information Science & Technology,
Universiti Kebangsaan Malaysia, 43500 Bangi, Selangor

¹shahrina@ukm.edu.my, ²rohizah@ukm.edu.my, ³masura@ukm.edu.my
⁴azura@ukm.edu.my, ⁵faridatul@ukm.edu.my, ⁶hms@ukm.edu.my

Abstract. Project development is one of the vital components that contribute to the continuous assessment marks for some courses in Institutions of Higher Learning. This study was conducted to develop video-based modules as a reference to students during the development of the database project used as active learning in the classroom. Video-based modules are suitable for learning approaches toward students in Gen-Z. The video modules development consists of several phases that have been set according to the topic of database project development. This study involved a total of 104 students in year two who will need to develop the database project individually. The results of the study found that the video-based module had a positive impact on the students. A total of 101 (97.1%) students agreed that the video-based module produced is easier to understand. Meanwhile, a total of 100 (96.2%) students found that this video-based module helps them to complete the given project. This active learning approach can be used for other courses that involve in project development as well as having a class with a large number of Gen-Z students.

Keywords: Project Development, Active Learning, and Video-based Module.

INTRODUCTION

Education plays a vital role in producing a generation that can meet the needs of today's industry. The 4.0 Industrial Revolution indirectly influenced and impacted the field of education. Education 4.0 is one of the consequences of the Industrial Revolution that is happening nowadays and will influence the teaching and learning methods (Shahrina et al., 2019). Institutions of higher learning are also affected by this educational revolution. In line with the revolution in the field of education, teaching and learning methods also need to change. Traditional teaching and learning methods need to be changed to attract current Gene-Z students who are more vulnerable and inclined to the use of the latest technology.

The learning sessions of some courses in Institutions of Higher Learning involve lectures, tutorials, laboratories, and assignments either in groups or individuals such as project development. Individual project development is one of the components taken as a continuous assessment and is the final output of learning in Advanced Database courses.
Each of the students will be given different titles of the project, and there are six lab modules as a guideline in project development. The development of this project is split into three phases, according to the lab module. In phase 1 are a database development and system interface basics. Meanwhile, phase 2 is data entry and data manipulation, while phase 3 is a transaction and software installation. Each phase is a combination of several laboratory modules. Students are given a certain period to complete each phase in project development.

The development process of this project is learned in each lab session using the modules provided. Previous lab sessions used the traditional method of using text-based modules, and the instructor will teach each instruction from the module in front of the class. This learning method creates a passive environment in the lab session. Based on observations, students are less focused on the explanation given by the instructor. Students are not interested in the text-based modules provided and are often left behind in the laboratory because they are unable to follow the steps described by the instructor. Visual learning methods, the use of technology as a medium of interaction, and rapid knowledge transfer are among the new learning methods for Gen-Z students (Ruzzakiah et al., 2019). Text-based learning materials are less attractive to Gen-Z students than visual, infographic, and video-based teaching materials. Thus, the video-based lab module is the best alternative to enable Gen-Z students to strengthen their understanding and assist them in the given project assignments.

Active learning methods are suitable to be implemented for Gen-Z students. This method can attract their interest in the learning process. Lab sessions conducted using video-based modules create an active learning environment among students. The video-based module provided in advance makes it easier for students to try first on their own before attending the lab session. During the lab session, students will actively interact with instructors and friends if there is an unresolved problem. Students are encouraged to discuss with friends to get ideas and solutions to their problems. This method is appropriate for the characteristics of Gen-Z students who like independent and self-directed learning (Moore et al., 2017).

CURRENT WORK

a) **Active Learning**

Active learning is one of the learning methods that are suitable for current Gen-Z students. This learning method encourages students to be actively involved in the learning process and activities. Various types of activities in active learning methods can be done to encourage student involvement and participation in the learning process, such as engaging them with course material and enhancing their critical thinking as they make applications beyond the classroom (Lumpkin et al., 2015). Giannakos et al. (2016) also stated that active learning is a teaching model that focuses on students' learning responsibilities. Meanwhile, according to Brame, C. (2016), students involved in building and enhancing understanding and knowledge are also among the definitions of active learning. The
activities may vary but require students to do higher-order thinking. According to Cattaneo, K.H (2017), one approach of the active learning styles is project-based learning that focuses on students' main output, which is a project. Various learning techniques and tools that can be used to create active learning sessions including discussion, reflection, problem-solving, using video, and so on refer to the course requirement as well as the availability of the tools, software, and hardware. Implementing this active learning method is very suitable for classes with a large number of students because it helps in the teaching and learning process. A study from Aji et al. (2019) found an improvement in student academic performance as an effect of the implementation of active learning methods.

b) Video

Video is an audio-visual medium used as entertainment, marketing, information, music, and learning materials. Nowadays, learning videos have been widely produced in line with the development of educational technology. The teaching medium often used by teachers in the classroom is learning videos (Syamsulaini et al., 2016). Video-based learning is a method that has a very positive effect on students, especially Gene-Z students who were born and are in the age of the latest technology. Online encyclopedias, videos, and various internet resources are learning methods within technology preferred by Gen-Z students (Moore et al., 2017). They are a Generation that is very vulnerable to technology and gadgets. Ruzzakiah (2019) states that smartphone technology and social media are standard for the current Gen Z students and become the leading platform as well as an effective mobile learning method. According to Cilliers (2017), the Gen-Z is surrounded by the virtual environment makes them consider that the learning and teaching environment is like in the virtual world. Therefore, they are less focused and quickly bored when learning sessions are traditionally implemented, especially when the learning materials used are text-based. The production of learning materials in the form of video aims to meet their needs, especially in terms of flexibility where they can watch the video using gadgets, anytime and anywhere. Using video as a learning method is very significant to be practiced in the teaching and learning process (Syamsulaini et al., 2016). The use of video in learning has a positive impact and impact on students. Compared to traditional lecture-based teaching, students' performance improves with video-based teaching methods (Murthykumar et al., 2015). According to Syaripuddin et al. (2019), video is one of the media that becomes the best medium in the teaching process to deliver information to the students.

METHODOLOGY

Video-based modules are produced based on six existing text-based modules, and each of the lab module is divided into 2 to 4 video modules. Brame (2016) explains that the learning video produced should be short and the display time less than six minutes so that students tend to watch the entire video and maximize students' attention to the video. Video-based modules are produced using Camtasia software and uploaded on the open learning platform (MOOC). The video-based module is uploaded phase by phase, and a week before the lab session begins. Students attend laboratory sessions according to schedule and use the video-based module as the learning material in the lab session that helps in developing the
project. Each lab session will be monitored by an instructor who will help if students do not understand or cannot solve the problem.

Figure 1 shows the implementation process of using video-based modules to help strengthen students' understanding in self-laboratory sessions as well as assist in developing a given database project. Each lab session will work on Lab Module 1 that has been split into several videos module. Each video-based module is produced according to the topics for database project development.

![Figure 1: Implementation of a video-based module for advanced database project development](image)

Based on the diagram above, students need to complete the project according to the phases set. Phase 1 of the project development is the result of a combination of Lab Module 1, Lab Module 2, and Lab Module 3 lab, which covers the topic of database development and system interface basics. Phase 2 of the project development is the result of a combination of Lab Module 4 and Lab Module 5, which covers the topics of data entry and data manipulation. While phase 3 is the result of Lab Module 6, which is the topic of transactions and software installation. The combination of these three phases will result in the final project of the advanced database.

Figure 2 shows the previous text-based lab module's appearance, and Figure 3 shows a video-based module that has been developed based on the text-based module. Several video-based modules were generated from each text-based lab module. This approach ensures that the display time for each video module developed is not too long and prevents students from losing focus.
PART 3: Editing Visual Basic Source Code and Using Form Events

A. Viewing VB Source Code

1. All user-editable visual basic source code is contained in the form that the code is written for. To view the source code, in the 'Solution Explorer' tab, right-click on the form 'frm_splashscreen_a123456.vb' and click 'View Code'.

2. Alternatively, you can click on the form name in the 'Solution Explorer' and press the 'F7' key on your keyboard.

3. The main window will switch to the source code in 'frm_splashscreen_a123456.vb'. You will see the automatically generated 'code snippet' for this form as shown below:

```vbnet
Public Class frm_splashscreen_a123456
End Class
```

INFO: This VB 'code snippet' represents the only user-editable area of the VB source code in a particular form. It is not the only source code, as Visual Studio will automatically generate other source code for controlling the Windows form display and other programming artifacts. Users are advised to edit source code only in these VB code snippets, and not alter any of the automatically generated code. Alteration of any of the automatically generated code will cause code corruption, which is usually irreversible. The only way to recover from the code corruption is to delete the entire form and restart from the beginning.

B. Automatically Generating Code Snippets for Form Object Events

1. Visual Basic code is normally executed during 'Form Events' or 'Object Events'. An 'Event' is an 'activity', 'action' or 'time' that will trigger the execution of user-entered code.

2. Double-clicking on any form object while in the form design window will automatically generate the code snippet for the object's default event.

3. The default event for the 'Form' object is the 'Form_Load' event. To generate its code snippet, switch to the form design window, and double-click on any empty area of the 'frm_splashscreen_a123456' form. The following code will be automatically added:

```
Private Sub frm_splashscreen_a123456_Load(sender As System.Object, e As System.EventArgs) Handles MyBase.Load
    'Add code here
End Sub
```

Figure 2: Text-based lab module

Figure 3: Video-based Module
Figure 4 shows the video-based module that has been uploaded on the open learning platform (MOOC) according to the lab module. Each module video will be published according to the time and date set into stages.

RESULT

The study focused on 104 of Year 2 students who need to develop projects individually to meet the requirements of the Advanced Database course. Questionnaires were given to students to get feedback on the effectiveness of the video-based modules as teaching materials that can help in project development as well as obtain feedback related to the content of the video-based module produced.

a) Demographic Analysis

Based on Figure 5, from a total of 104 respondents, 60.6% of them are female, and 39.4% of them are male. The result showed that probably due to the higher number of female than male students in the General population of this faculty.
b) Content of the video-based module

Figure 6 shows a total of 101 (97.1%) students agreed that the video-based module produced is easier to understand than the text-based module. The result had shown that Gen-Z students are easier to understand and focus on visual-based material. The use of this video-based module allows students to view and repeatedly try each problematic step and will indirectly improve student understanding in each process.
c) **Effectiveness of video-based module**

Meanwhile, based on figure 7, a total of 100 (96.2%) students found that this video-based module helps them to complete the given project. Each project development step shown in the video-based module helps and facilitates the development of the student project. As a result, students can complete and produce projects on time.

![Effectiveness of Video](image)

Figure 7: Percentage of respondents according to their feedback on the effectiveness of the video-based module

Based on the analysis results, the video-based module produced has had a positive impact on students. The content of the video-based module is easier to understand compared to the previous text-based laboratory module.

FUTURE WORK

From the analysis result, the video-based module has an impact on students' project development. According to Azniza et al. (2017), learning videos increase the percentage of students' understanding of some challenging topics and have a significant impact on student achievement. This active learning approach can be used for other courses that involve in project development and having a class with a large number of Gen Z students. It is hoped that further studies can be continued by studying the relationship and the impact of the video-based module on student performance and achievement in this course.
CONCLUSION

This study found that the video-based module helped students complete the task of developing advanced database projects individually. Students can learn and understand the project development processes using the video-based module provided. The video-based module gives positive effects and impact on the students. Video content is one of the best learning materials suitable for Gen-Z students. The video-based module helps in the teaching and learning activities of laboratory sessions involving a large number of students. Laboratory sessions have been implemented in an active learning environment. This situation indirectly helps students think more creatively, increase self-confidence, and improve students' communication skills.

REFERENCES

